日日碰狠狠躁久久躁96avv-97久久超碰国产精品最新-婷婷丁香五月天在线播放,狠狠色噜噜色狠狠狠综合久久 ,爱做久久久久久,高h喷水荡肉爽文np肉色学校

首頁 行業百科 淺談數據治理遇到的問題與挑戰

淺談數據治理遇到的問題與挑戰

|億信華辰大數據知識庫2023-01-15

淺談數據治理遇到的問題與挑戰

大數據不是憑空而來,1981年第一個數據倉庫誕生,到現在已經有了近40年的歷史。而國內企業數據平臺的建設大概從90年代末就開始了,從第一代架構出現到現在已經經歷了近20年的時間。在這20年的時間里,國內數據平臺實施者可以說是受盡折磨,數據項目一直不受待見,是出了名的臟活累活。很多時候數據治理廠商做了很多工作,但客戶卻認為沒有看到什么成果。

大數據不是憑空而來,1981年第一個數據倉庫誕生,到現在已經有了近40年的歷史。而國內企業數據平臺的建設大概從90年代末就開始了,從第一代架構出現到現在已經經歷了近20年的時間。在這20年的時間里,國內數據平臺實施者可以說是受盡折磨,數據項目一直不受待見,是出了名的臟活累活。很多時候數據治理廠商做了很多工作,但客戶卻認為沒有看到什么成果。大部分數據治理咨詢項目都能交上一份讓客戶足夠滿意的答卷,但是當把咨詢成果落地到實處的時候,因為種種原因,很可能是另一番截然不同的風景。如何避免這種情況發生,是每一個做數據治理的企業都值得深思的問題。

目前大數據平臺的突出問題主要體現在以下四方面:
數據不可知:用戶不知道大數據平臺中有哪些數據,也不知道這些數據和業務的關系是什么,雖然意識到了大數據的重要性,但平臺中有沒有能解決自己所面臨業務問題的關鍵數據?該到哪里尋找這些數據?
數據不可控:數據不可控是從傳統數據平臺開始就一直存在的問題,在大數據時代表現得更為明顯。沒有統一的數據標準導致數據難以集成和統一,沒有質量控制導致海量數據因質量過低而難以被利用,沒有能有效管理整個大數據平臺的管理流程。
數據不可取:用戶即使知道自己業務所需要的是哪些數據,也不能便捷自助地拿到數據,相反,獲取數據需要很長的開發過程,導致業務分析的需求難以被快速滿足,而在大數據時代,業務追求的是針對某個業務問題的快速分析,這樣漫長的需求響應時間是難以滿足業務需求的。
數據不可聯:大數據時代,企業擁有著海量數據,但企業數據知識之間的關聯還比較弱,沒有把數據和知識體系關聯起來,企業員工難以做到數據與知識之間的快速轉換,不能對數據進行自助的的探索和挖掘,數據的深層價值難以體現。
在激烈的市場競爭下,大數據廠商提出來數據治理的各種理念,有的提出覆蓋數據全生命周期的數據治理,有的提出以用戶為中心的自服務化數據治理,有的提出減少人工干預、節省成本的基于人工智能的自動化數據治理,在面對這些概念的時候,我們一方面要對數據現狀有清晰的認識,對數據治理的目標有明確的訴求,另一方面還要知道數據治理中各種常見的誤區,跨越這些陷阱,才能把數據治理工作真正落到實處,項目取得成效,做到數據更準確,數據更好取,數據更好用,真正地用數據提升業務水平。
隨著數據和應用程序對組織變得至關重要,數據治理工具在保護數據資產完整性方面的重要性也在增加。
大多數數據治理工具可以幫助您:
1.授權決策
2.提高數據質量
3.簡化的數據管理
4.更高的數據互操作性
5.卓越的數據血統
睿治智能數據治理平臺由億信華辰自主研發,融合數據集成管理、數據交換管理、實時計算存儲、元數據管理、數據標準管理、數據質量管理、主數據管理、數據資產管理、數據安全管理、數據生命周期管理十大產品模塊,各產品模塊可獨立或任意組合使用,打通數據治理各個環節,可快速滿足政府、企業用戶各類不同的數據治理場景。為您的數據治理框架選擇合適的工具與其說是工具,不如說是了解您自己的數據治理策略的目標。
認為本內容有幫助
0
您可能需要的數據產品
億信華辰助力政企數字化轉型
customer

在線咨詢

在線咨詢

點擊進入在線咨詢