數據治理不是一個臨時性的運動,從銀行業務發展、數據治理意識形成、數據治理體系運行的角度,需要一個長效機制來進行保證。 在大數據時代,經過數據治理的銀行數據可以發揮更大的作用。

1.利用大數據挖掘技術分析各類海量信息,發現市場熱點與需求,實現產品創新服務
可以將大
數據應用到產品生命周期,深入挖掘客戶需求,把握客戶痛點,推動產品創新。利用大數據技術對社交網絡信息、在線客戶評論、博客、呼叫中心服務工單、用戶體驗反饋等信息進行深度挖掘和分析,充分洞察客戶,分析客戶的情緒,了解客戶對產品的想法,獲知客戶需求的變化趨勢,從而對現有產品進行及時的調整和創新,事情貼近客戶的生活場景和使用習慣。
基于大數據創新產品評價方法,為產品創新提供數據支撐。通過
大數據分析,改變目前以規模、總量為主的業務評價方式,建立一整套完整的以質量、結構為主的全新的評價方式,以引導全行真正追求有質量、有效益的發展。
2.加強內外部信息聯動,重點利用外部信息提升銀行風險防控能力
進一步加強與稅務、海關、法院、電力部門、水務部門、房產交易登記中心、環保部門以及第三方合作機構的數據互聯共享,有效拓寬信息來源渠道,深度挖掘整合系統內外客戶信息、關聯關系、交易行為、交易習慣、上下游交易對手、資金周轉頻率等數據信息,利用大數據技術查找與分析不同數據變量間的關聯關系,并建立相應的決策模型,提升銀行風險防控能力。
在信用風險方面,可以結合外部數據,完善信用風險防范體系,基于可視化分析有效防控信用風險的傳導。引入大數據理念和技術,統一信用風險模型管理,構建覆蓋信用風險訓練、模型管理、日常預警、評分評級、客戶信用視圖以及業務聯動控制的信貸大數據平臺,建立多維度、全方位的縫隙愛你預警體系。
在市場風險方面,基于市場信息有效預測市場變動,基于大數據處理技術提升海量金融數據交易的定價能力,構建定價估值引擎批量網格計算服務模式,支持對海量交易的實時定價,有效提升銀行風險管控與定價能力,為金融市場業務的發展提供有力支撐。
在操作風險方面,依托大數據信息整合優勢,有效防控操作風險。通過可視化技術,從業務網數據中發現識別風險線索,實現由“風險監控”向“業務監控”模式轉變,提升風險的提前預警能力。加強跨專業風險監控模型的研發,通過由點帶線、由線及面的矩陣式關聯監控,提前識別風險交織趨勢,防范風險傳染。
3.利用大數據技術提升經營管理水平,優化業務流程,實現精細化經營決策
在經營決策方面,通過外部數據的補充和整理,實現經營分析外延的拓展,從市場和經營環境的高度分析各級機構的發展方向、競爭壓力,制定更合理、更有效的經營策略。同時,應用大
數據可視化技術,實現復雜分析過程和分析要素向用戶的有效傳遞,增強分析結果說服力和指導性,向經營人員提供有力的信息支撐。
在資源配置方面,依托大
數據采集和計算能力,提升測算的敏感性和有效性,加強財務預測的可靠性和有效性,為總體資源配置提供更好的信息支撐,實現對具體資源配置的動態管理。
在過程改進方面,優化業務流程,對交易、日志的專業挖掘,探索當前業務處理流程節點的瓶頸,尋求最有的解決方案。比如通過分析客戶從排隊到等候完成全部交易的流程合理性,提出過程改進方法,提升網點整體運營效率和客戶體驗。
在運維保障方面,基于流數據處理技術,搭建準實時的應用交易級監控平臺,實現交易運行情況的即時監控,保障業務運行穩定高效。
(部分內容來源網絡,如有侵權請聯系刪除)